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ABSTRACT

Final Report: Exactly embedded density functional theory: A new paradigm for the first-principles modeling of 
reactions in complex systems

Report Title

Our ARO-supported work includes key contributions to the development of rigorous quantum embedding methods for the calculation of 
ground- and excited-state potential energy surfaces. Quantum embedding has long been recognized as a promising strategy for vastly 
reducing the cost of rigorous electronic structure theory calculations. However, prior to our work in this area, density functional and 
wavefunction embedding approaches were only applicable to weakly interacting systems, a severe constraint that excluded essentially all 
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demonstrated that our approach enables simulation of large systems with sub-linear scaling of the required computational time; and we have 
further demonstrated that it dramatically reduces the cost of accurately describing transition-metal complexes and large molecules and 
clusters.   This work opens new doors for the accurate description of decomposition, catalytic, and electronically non-adiabatic processes in 
complex systems. This research meets the aims of the Army Research Office by significantly advancing the scope and accuracy of first-
principles molecular simulations in complex, reactive systems.
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Award Number: W911NF1110256

Principal Investigator (PI): Thomas F. Miller III
Institution: California Institute of Technology

Title of Research: Exactly embedded density functional theory:
A new paradigm for the first-principles
modeling of reactions in complex systems

OVERVIEW

Research from the past funding period has focused on the development of ab initio electronic
structure to enable the simulation of reaction dynamics in general, condensed-phase systems. The
embedded density functional theory (e-DFT) method has beencombined with recent theoretical
advances, including an exact treatment of the non-additivekinetic energy and a molecular em-
bedding strategy that achieves sub-linear scaling on large-scale parallel computers. The primary
objectives of the proposed research are (i) to fully benchmark and refine the new e-DFT approach
and (ii) to demonstrate that it provides systematically improvable accuracy for large molecules
and condensed-phase systems. Accomplishment of these research objectives meets the aims of
the Army Research Office by significantly advancing the scopeand accuracy of first-principles
molecular simulations in complex, reactive systems.

In recent years, a central achievement of my research program has been to develop simulation
methods that reveal, with new depth, the mechanistic details of quantum mechanical processes that
are central to chemical reactions. The nature of this achievement is three-fold: firstly, we have
worked from the foundation of rigorous quantum statisticalmechanics and semiclassical dynamics
to develop path-integral methods that significantly expandthe scope and reliability of condensed-
phase quantum dynamics simulations [1–9]. Secondly, we have overcome fundamental limitations
in quantum embedding theories to dramatically improve the description of molecular interactions
in systems with subtle electronic properties [10–17]. And finally, we have established a leadership
role in the application of such methods to the elucidation ofgenuinely complex systems, including
enzyme reactions and inorganic electron-transfer and proton-coupled electron transfer processes.

With ARO support in the last funding period, the Miller grouphas made key contributions to rig-
orous multi-level partitioning methodologies for the calculation of potential energy surface calcu-
lations. Multi-level partitioning, or quantum embedding,has long been recognized as a promising
strategy for vastly reducing the cost of rigorous electronic structure theory calculations [18–29].
However, prior to our work in this area, accurate density functional and wavefunction embedding
approaches were limited to weakly interacting systems, a severe constraint that excluded essen-
tially all condensed-phase and reactive chemical applications. By developing both inversion-based
[10–12] and projection-based [13–17] strategies to enableaccurate embedding in the context of
strongly interacting (i.e., covalently or hydrogen-bonded) systems, we have expanded the applica-
bility of quantum embedding methodologies (Fig. 1A), an area of intense interest. In addition to
developing new algorithms and software, we have demonstrated that our approach enables simula-
tion of large systems with sub-linear scaling of the required computational time (Fig. 1C); and we
have further demonstrated that it dramatically reduces thecost of accurately describing transition-
metal complexes [12, 17] (Fig. 1B) and large molecules, clusters, and liquids [11, 13–16]. This
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work opens new doors for the accurate description of decomposition, catalytic, and electronically
non-adiabatic processes in complex systems.

Publications from our previous period of ARO funding include:

1. Goodpaster JD, Barnes TA, Ananth N, and Miller TF. Exactlyembedded density functional
theory methods for the first-principles modeling of reactions in complex systems. Proceed-
ings of the 27th Army Science Conference (2010).

2. Ananth N and Miller TF. Exact quantum statistics for electronically nonadiabatic systems
using continuous path variables. J. Chem. Phys., 133 (2010)234103.

3. Goodpaster JD, Barnes TA, and Miller TF. Embedded densityfunctional theory for cova-
lently bonded and strongly interacting subsystems. J. Chem. Phys., 134 (2011) 164108.

4. Manby FR, Stella M, Goodpaster JD, Miller TF. ‘A simple, exact density-functional-theory
embedding scheme.’ J. Chem. Theory Comput., 8 (2012) 2564.

5. Goodpaster JD, Barnes TA, Manby FR, Miller TF. ‘Density functional theory embedding
for correlated wavefunctions: Improved methods for open-shell systems and transition metal
complexes.’ J. Chem. Phys., 137 (2012) 224113.

6. Habershon S, Manolopoulos DE, Markland TE, and Miller TF.‘Ring-Polymer Molecular
Dynamics: Quantum effects in chemical dynamics from classical trajectories in an extended
phase space.’ Annu. Rev. Phys. Chem., 64 (2013) 387.

7. Barnes TA, Goodpaster JD, Manby FR, and Miller TF. ‘Accurate basis-set truncation for
wavefunction embedding.’ J. Chem. Phys., 139 (2013) 024103.

8. Goodpaster JD, Barnes TA, Manby FR, Miller TF. ‘Accurate and systematically improv-
able density functional theory embedding for correlated wavefunctions.’ J. Chem. Phys., J.
Chem. Phys., 140 (2014) 18A507.

9. Barnes TA, Kaminski J, Borodin O, Miller TF. ‘Oxidation potential of ethylene carbonate
and dimethyl carbonate calculated using projection-basedembedding,’ in prep.

10. P. Huo, J. D. Goodpaster, T. F. Miller, III, ’Reaction pathways in cobalt-based hydrogen
reduction catalysts,’ in prep.
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Expanded Discussion: Embedding methods to bridge lengthscales in electronic structure.

The use of computational modeling to investigate complex chemical systems faces extraordi-
nary challenges from the perspective of electronic structure theory. Target applications combine
large system sizes with subtle interactions, and in many cases, multiple dynamical timescales and
electronically nonadiabatic effects. The development of new methods to perform reliable, on-the-
fly electronic structure calculations at a computational cost that makes feasible the simulation of
chemical reactions in large systems remains a central theoretical challenge.

At its heart, the electronic structure problem requires a compromise between accuracy and fea-
sibility that is dictated by system size. Kohn-Sham densityfunctional theory (KS-DFT) – the
workhorse method for condensed-phase systems [32, 33] – is well known to have fundamental
deficiencies associated with currently available exchange-correlation (XC) functionals [34, 35];
these deficiencies include both self-interaction errors and failure to describe systems exhibiting
significant static correlation. Resulting artifacts include incorrect spin-state predictions for tran-
sition metal complexes, charge-transfer errors, and underestimation of hydrogen-transfer barriers
[36–38]. Wavefunction theories, such as CCSD(T) and CASPT2, address these problems but are
too costly to use for most applications in large systems.

Methods that exploit the intrinsic locality of molecular interactions show significant promise
in making tractable the electronic structure calculation of large-scale systems. In particular, em-
bedded density functional theory (e-DFT) offers a formallyexact approach to electronic struc-
ture calculations in which complex condensed-phase chemical problems are decomposed into the
self-consistent solution of individual smaller subsystems [39–46]. The objectives of the e-DFT
approach are thus similar to those of more approximate partitioning and fragmentation schemes
[47–52], including the QM/MM and ONIOM methods, but e-DFT avoids the uncontrolled approx-
imations (such as link atoms) and errors associated with subsystem interfaces that fundamentally
limit these other widely used methods.

However, in practice, previous e-DFT studies have employedsubstantial approximations in
the description of subsystem interactions [42, 53, 54]. Thesubsystem embedding potentials that
emerge in the e-DFT framework include non-additive kineticpotential (NAKP) terms that enforce
Pauli exclusion among the electrons of the various subsystems. Without knowledge of the exact
functional for the non-interacting kinetic energy, previous e-DFT studies have employed approx-
imate NAKP treatments that break down in cases for which the subsystem densities significantly
overlap (which include hydrogen-bonded or covalently bonded subsystems). Prior to our work in
this area, e-DFT studies were thus limited to weakly interacting subsystems, a severe constraint
that excluded essentially all condensed-phase and reactive chemical applications.

To overcome this constraint, my group has focused on the development of numerically exact
methods for obtaining subsystem embedding potentials in e-DFT. We have made key contributions
that include(i) the development of optimized-effective-potential-based(OEP-based) methods for
the exact evaluation of NAKP contributions to the embeddingpotential,(ii) the combination of ex-
act embedding potentials with correlated wavefunction theory (WFT) methods to enable seamless
WFT-in-DFT embedding for general systems,(iii) the development of a simple, robust method to
perform numerically exact e-DFT calculations without any need for OEP operations. By enabling
accurate quantum embedding in the context of strongly interacting (i.e., covalently or hydrogen-
bonded) systems, we have expanded the applicability of quantum embedding methodologies. In
addition to developing key algorithms and software, we havedemonstrated that the e-DFT ap-
proach enables simulation of large systems with sub-linearscaling of the required computational
time; and we have further demonstrated that it dramaticallyreduces the cost of accurately describ-
ing transition-metal complexes [12, 17], large molecules and clusters [14, 15], and liquid mixtures
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that include lithium-ion battery electrolytes [16]. This work provides new tools for the accurate de-
scription of catalytic and electronically non-adiabatic processes in complex systems, and it opens
the door for widespread adoption of rigorous quantum embedding approaches in computational
chemistry.

The remainder of this section describes key aspects of our work in this area. In this developing
field, my research group has In particular, we have contributed to the development and applica-
tion of OEP-based methods for the scalable and accurate treatment of complex systems [10–12].
Moreover, we have recently introduced a new method for the exact treatment of the e-DFT em-
bedding potential that completely mitigates any need for OEP calculations (see Section 2.b) [13];
this approach, which has become one of the most heavily downloaded articles from theJournal of
Chemical Theory and Computation (JCTC)for years 2012, 2013, and 2014, provides the needed
simplicity and robustness to enable broad utilization by the computational chemistry user commu-
nity in the near term.

2.a. OEP-based methods for exact embedding.
In our initial contributions to the methodology of e-DFT, wedeveloped accurate and scalable

OEP-based treatments for the NAKP in e-DFT. In particular, we introduced a numerically ex-
act protocol for computing the NAKP contributions to the subsystem embedding potentials; we
demonstrated the effectiveness of this protocol for systems with both weakly and strongly over-
lapping subsystem densities [10, 11]; we combined the exactembedding potentials with WFT
methods to enable seamless WFT-in-DFT embedding [12]; and we demonstrated the advantageous
parallel scaling of the e-DFT approach [11].

2.a.1. DFT-in-DFT embedding:Our original e-DFT protocol [10] utilizes OEP techniques, such as
those of Zhao, Morrison, and Parr [58] or Wu and Yang [59], which involve a search for the local
potential that yields one-electron orbitals that both reproduce a target electronic density and mini-
mize the orbital-dependent total energy functional. During each iterative update of the subsystem
densities and embedding potentials, the OEP calculation iscombined with an orbital-dependent
expression for the NAKP, and at self-consistency, the iterative procedure yields a total electronic
density and a total energy that are identical to those obtained from a KD-DFT calculation per-
formed over the full system. Because the e-DFT calculation yields the same results as the full
KS-DFT calculation (for a given orbital basis set and approximate XC functional), no new errors
are introduced through the embedded subsystem description; it is in this sense that we achieve a
numerically exact DFT-in-DFT embedding protocol.

Fig. 1A provides a demonstration of our general e-DFT implementation in the Molpro quan-
tum chemistry package. The figure illustrates the well-known breakdown of approximate treat-
ments of the NAKP for applications involving strongly overlapping subsystem densities. It further
shows that our exact treatment of the NAKP overcomes this large error, yielding the first numeri-
cal demonstration of DFT-in-DFT embedding for chemical bond-breaking with chemical accuracy
[11]. In addition to the Li+-Be curve shown in the figure, dissociation curves for the CH3-CF3
molecule, transition-metal complexes, and hydrogen-bonded water clusters have been reported
[11, 12], demonstrating in all cases that the exact e-DFT protocol preserves excellent agreement
with reference KS-DFT calculations, whereas approximate treatments of the NAKP lead to quali-
tative failures in the calculated energies and equilibriumstructures. Further examples have been re-
ported in which the subsystem densities correspond to valence and core electronic shells in atomic
systems [10], again illustrating the expected breakdown due to standard NAKP approximations,
with errors of 30-80% in the calculated ionization energies; by contrast, the exact protocol is found
to be accurate and stable.
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FIG. 1: (A) The Li+-Be potential energy curve for heterolytic bond cleavage, obtained using our exact OEP-based

description for DFT embedding (red) and using approximate (Thomas-Fermi, LC94) descriptions for the embedding

potential (blue, green). Results from the reference Kohn-Sham DFT method are also included (black) and are graphi-

cally indistinguishable from our e-DFT results. We have demonstrated similar successes for water cluster dissociation,

C-C bond cleavage, and transition metal complexes [11]. Theinset presents the potential energy curves, shifted ver-

tically and horizontally to align the minimum. (B) WFT-in-DFT embedding results for the [Fe(H2O)6]2+ cation [12].

Above, the density partitioning is illustrated, for which only the density associated with the transition metal atom

(red) is treated at the CCSD(T) level while the density for the surrounding waters (blue) is treated at the DFT level.

Below, the low-spin/high-spin energy splitting of the complex (in cm−1) is calculated using standard KS-DFT with

various XC functionals (red) and with CCSD(T)-in-DFT embedding with only the transition metal atom treated at the

CCSD(T) level (green). The quantum embedding treatment provides results that are far less sensitive to the choice of

approximate DFT XC functional and that are generally improved in comparison to the reference CCSD(T) calculation

for the full system (black). (C) Wall-clock timings for lattices of hydrogen molecules, ranging in size from 16 to 250

atoms. The black lines indicate ideal quadratic and linear scaling; the blue curve shows the serial implementation of

Kohn-Sham DFT in Molpro; the red curve shows the timings for DFT embedding, using a number of processors equal

to the number of molecules in the system [11].

2.a.2. WFT-in-DFT embedding:Fig. 1B illustrates the most important practical feature ofthe e-
DFT approach [12]: It provides a versatile, yet rigorous, framework to describe different regions
of the system at different levels of electronic structure theory [42–44, 57, 60–65]. In this example
calculation for the low-spin/high-spin splitting energy of the hexaaquairon(II) cation, a subsystem
comprised of the Fe atom is treated at the CCSD(T) level of theory, whereas another subsystem
comprised of the water ligands is treated using KS-DFT; the e-DFT framework simply is used
to determine the external potential that is created for eachsubsystem by the other. Since the
CCSD(T) level of theory is applied only to a single atom, the computational cost for the WFT-in-
DFT embedding calculation is reduced by a factor of 50 relative to a CCSD(T) calculation over the
full system.

The calculations in Fig. 1B were made possible by new techniques that improve the accu-
racy and stability of WFT-in-DFT embedding calculations [12]. In particular, we derived spin-
dependent embedding potentials in both restricted and unrestricted orbital formulations and pro-
vided the first implementation of WFT-in-DFT embedding for open-shell systems, and we devel-
oped an orbital-occupation-freezing technique to improvethe convergence of the OEP operations.
The top panel in Fig. 1B illustrates the density partitioning among the two subsystems. Below, the
low-spin/high-spin energy splitting of the complex (in cm−1) is calculated using standard KS-DFT
with various XC functionals (red) and with CCSD(T)-in-DFT embedding with only the transition
metal atom treated at the CCSD(T) level (green). The quantumembedding treatment provides
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results that are far less sensitive to the choice of approximate DFT XC functional and that are gen-
erally improved in comparison to the reference CCSD(T) calculation for the full system (black).
Additional studies of the dissociation curve for the ethylene-propylene dimer [12] reveals that
WFT-in-DFT embedding reproduces full CCSD(T) energies to within 0.1 kcal/mol at all distances,
thus mitigating errors in the dispersion interactions due to conventional XC functionals while si-
multaneously avoiding errors due to subsystem partitioning across covalent bonds [12].

These calculations illustrate that WFT-in-DFT embedding,when employed in combination with
exact methods for treating the NAKP contributions to the embedding potential, offers significant
opportunities for the multi-level (or multi-physics) description of complex systems. WFT-in-DFT
embedding achieves the objectives of the QM/MM and ONIOM schemes for interfacing different
levels of electronic structure theory; however, in comparison to these widely used methods, WFT-
in-DFT embedding exhibits clear advantages that include(i) a more rigorous and systematically
improvable approach to multi-level electronic structure calculations and(ii) a more computation-
ally efficient multi-level description, since the rigorousdescription of the subsystem interfaces
allows much smaller WFT subsystems to be employed.

2.a.3. Parallelizability and scaling.Another important feature of the e-DFT approach is that it
leads to highly parallel electronic structure methods [11,54]. For our Molpro implementation
of the exact e-DFT protocol, Fig. 1C demonstrates that ideal, constant scaling of the wall-clock
computation time with increasing system size can be achieved [11]. Intrinsic linear-scaling com-
plexity arises from the loose coupling among the individualsubsystem calculations, and additional
parallelization is achieved by treating each subsystem on adifferent distributed-memory computer
processor. The accuracy of the calculated energies and electronic densities do not degrade with
increasing system size.

2.b. A simple, exact e-DFT method that avoids OEP calculations.
Earlier this year, we made a significant breakthrough in the efficiency and robustness of e-DFT

calculations [13]. An exact scheme was developed that correctly accounts for NAKP contributions
via a projection technique, while completely avoiding any numerically demanding OEP calcula-
tions. This work introduces three simple innovations:(i) We replaced the iterated DFT-in-DFT
with a single conventional KS calculation.(ii) We completely avoided the issue of the NAKP
through the use of a level-shifting projection operator to keep the orbitals of one subsystem or-
thogonal to those of another (Fig. 2). And,(iii) we developed a simple but effective perturbation
theory to eliminate practically all dependence on the level-shift parameter.

Numerical tests of the new e-DFT method for a range of molecular systems, including those
with conjugated and multiply-bonded subsystems, were shown to consistently yield DFT-in-DFT
embedding with errors below 10−6 kcal/mol; these results mark a dramatic improvement over
the system-dependent 0.1−1 kcal/mol errors that can be expected using existing OEP-based ap-
proaches. Additionally, we demonstrated that the method allows for accurate and robust WFT-
in-DFT embedding calculations and embedded many-body expansions [13]. Moreover, in ex-
tremely encouraging preliminary results that we have obtained for (CAS-PT2)-in-DFT embedding
for cobalt-based hydrogen reduction catalysts [17], the embedding calculations recover the full ac-
curacy of the full CAS-PT2 method for proton-transfer barriers and driving forces while reducing
the cost of the full calculation by over a factor of 700.

The new projection-based embedding approach only relies onexisting, stable, well-developed
software technologies [13]. It requires nothing more than aKS code, an orbital localization
scheme, some elementary matrix operations in the atomic orbital basis, and any wave function
method that can accept an arbitrary core Hamiltonian. Sincethese ingredients are available in
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practically all molecular electronic structure codes, we anticipate no barriers to widespread adop-
tion of the approach.
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FIG. 2: Demonstration of the projection

technique that is employed in the new exact

embedding scheme, using the example of

embedding the 10 electrons of the -OH moi-

ety of ethanol in the environment produced

by the ethyl subsystem. Following pro-

jection, the subsystem orbitals are explic-

itly orthogonalized, thus eliminating non-

additive kinetic energy contributions [12].

We have already completed the development of a user-
friendly implementation of the new projection-based ap-
proach to DFT-in-DFT and WFT-in-DFT embedding in the
Molpro quantum chemistry package, which is available to
users in over 500 institutions. We recognize that WFT-in-
DFT embedding will have application domains that relate
to all aspects of simulation and modeling of complex chem-
ical systems, and we anticipate that a sizable user commu-
nity will benefit from our methodological and software de-
velopments. This work provides new tools for the accu-
rate description of catalytic and electronically non-adiabatic
processes in complex systems, and it opens the door for
widespread adoption of rigorous quantum embedding ap-
proaches in computational chemistry.

Indeed, our recent WFT-in-DFT implementation in the
Molpro program has been shared with and is currently be-
ing tested and utilized by a range of theoretical chemistry
groups, including those of:

• Prof. Donald Truhlar (U. Minnesota)

• Prof. Qiang Cui (U. Wisconsin)

• Prof. Berend Smit (UC Berkeley)

• Prof. Andres Köhn (U. Stuttgart)

• Prof. Daniel Lambrecht (U. Pittsburgh)

• Prof. John Keith (U. Pittsburgh)

• Prof. Jeremy Harvey (U. Bristol)

• Dr. Betsy Rice (ARO)

• Prof. Fred Manby (U. Bristol) and Kaito Miyamoto
(U. Bristol / Toyota Co.)
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